UNCLASSIFIED

AD NUMBER
ADB814399
CLASSIFICATION CHANGES
TO: uncl assified
FROM: restricted

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Di stribution authorized to DoD only;

Adm ni strative/ Qperational Use; MAR 1945. O her
requests shall be referred to National
Aeronautics and Space Adm nistration,

Washi ngt on, DC. Pre-dates fornmal DoD

di stribution statenents. Treat as DoD only.

AUTHORITY

NACA list dtd 28 Sep 1945; NASA TR Server
website

THISPAGE ISUNCLASSIFIED




[

the Natlonal Defense of the Uniterd Crates within the momning Bervices cf the United Btatee, appropriate civilian offlizers
© af the Eepronage Act, USC 5D:3) and 32. Ite transmieslon or and wmployeee <f the Federal Go'ernnont who have a legit_mate ~

R L A S pTRE T : —
L_ﬁ_‘ N "—'{—'3— B —=h) ) q [, .
NATIONAL ADVISORY COMMITTEE |
FOR AERONAUTICS |
TECHNICAL NOTE
No. 569
ON A METHEOD OF CONSTRUCTING T#WO-DIMEJSIONAL SURBSOHIC .
COMPRESSIBLE FLOWS AROUED CLOSED PBQFILES
By Lipman.Bers ' -

Brown University S

Washingtoi

Wereh 345 pop REFERER

s zef

— g oy RS EETTOT,
CLASSIFIED DOCUMENT ITOT TC LD Talden v
This document contalrs claesified information affecting mAy be imparted only to pereone in the military end naval

.he revelation of 11.9 contente in any manner te an upnauthor- intereet therein, and to Unlited States citizens of known ley- -

tzed pereon ie prohibited by law. Inroruthn so claseifled alty and dlu:rou.on who of neceseity must be informed thereofl.

RESTRICTED |




** RESTRICTED
NATIONAL ADVISORY GOMMITTEE :FOR ARRONAUTICS
'TEOHNIOAL WOTE -NO. 969

OH A ﬁET“OD OF CONSTRUCTING TWO DIMENSIONAL SUBSONIG
OOMPR?SSIBLE FLOWS AROUND GLOSED PROFILAS

By Lipman Bers
SUMMARY'.- s

It is shown that under cértaln: conditions a two-dimen-
slonal  subsonic compreéessible flow around &n airfoll profils
can-be derived from an incompressible flow arotnd another
profile,- The connection'between these twd "conjugate flows':
is given Dby a simple ¢onformal transformatlon of tha resPGc—-
tive hodog;aph planes.

-
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The transformation of a given incompressible flow 1nto
a compressible flow around a slightly distorted profile ra--
duces %o the integratlon of a linear partial differential .
equatlon in the pPhysical plane of %thé incompressible flow.
Ad approximate solution of this equation is indicated.- Fur—
ther research 1s necessary in order to extend the’ applica—j
bility of the method and in order to reduce the computational
work involved in the rlgorous solutlon to an acceptable nin-
imom, x : A ; v #

The transformation of an incompressible flow into a
compreg&sible onecan be carried out complefely and in a’
closed form under the assumption of the linsarized pressure=
density relation. The fipal formulas represent an extension
of thé result of Ton Karman and Tgien, to which they reduce.

in the special’ case of a flow without circulation. .It is .
shown that essentially all compresslble flows can: be obtainsd

bv this method - .
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2 L - *  NHACA TN No. 969
INTRODUCTION - 5+

The high level which has been'gttained by the theory of
two-dimensional incompressible flows 1s due to the fact that
thig theory 1s based upon a highly developed mathematical
theoxry, that of mnalytic functiorig of & complex variable.
Every analytic function yields a.possible flow pattern and
vice versa, - Furthermore, the use "of transformations per-
formed by means of analytic functions (conformal transforma-
tions) permits the derivation of wall possible flews from a
few simple standard forms. It seems obvious that the theory
of two-dimensional compressible flows (at least as far as
subsonic flows are concerned) reguires the development of a
gimilar mathematical background.

The theory of slgma-monogenic .functions {(references 1
and 2) is an atbemnt to study. a class. of complex functions
the role of whiech in gas dynamics is. co*barable to that of
analytic functions in the theory of incompressible flows.
Gelbart (reference 3) has outlined the application of this
method to the study of commressible flows. Further applica—
tions depend upon the investigation of singularities of
sigma~monosenic. functions. (Such an investigation is being
conducted. ) Reference also is made to a recent report by
Garrick and Xaplan (reference 4), The investigation of
transformatlioneg which for the case of compressible flows take
the place of conformal transformations is the main theoreti-
cal aim of the present report. :

.'-ne fol]oging remarks may 1ndicate in which way such
transformations enter into the study of compressible flows
around airfoll profiles.

The differential eguations governing the steady two-
dimensional potential flow of a '‘compressible fluid are non-
linear and therefore . difficult ‘4o .treat .as far &as beth the-
oretical considerations and numerdicsl cdomputations are con—
cerned, -Molenbroek. (referenee 5). and Tchaplygin (referencs
6) have shown that the eonations become linear in the hodo-
graph plane, There exist various methods of obtaining solu-
tions of these hodograph equations, in particular of obtaln-
ing solutions which in a certain sense correspond to given
solutions of the Cauchy-Riemann equations - that 1s, to given
incompresgsible flows. Some of these methods are: separatlon
of variables (so successfully used by Tchaplygin in solving

.
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jet problems), the method of 1htegral operators (Bergman,
reference 7), the method of sigma-monogenic functions (Bers
and Gelbart, reference 1), and an approximate method of
Temple and Yarwood.(reference 8). Furthermors, by modifying
the pressurs~denslty relation, the hodograph equations can

be made to coincide with the Cauchy-Riemann equations, as is 7~

done by Tchaplygin (reference 6), Busemann (reference 9),
Demt chonko (reference 10), and, in a more rational way, by
Von Kirmédn and Tsien (references 11l and:12). i :
However, the real difficulty -lies hnot only in obtaining
a solutiorn but in obtaining the "right" solution - that is,
one wilch leads to a flow of a desired type in the physical

plane, for example, to a flow around a ¢losed profile. This

difficulty is illustrated by the fact that even for the case.
when the hodograph equations’' are eimply the Cauchy-Riemann
equations, the computation of flows arouwnd closed profiles
has untll now been carried out only for a special case (flows™
without circulation)

Tnerefore the study of the flow-in the hpdosraph plape
must be sunplemented by the 1nVestigation of the mapping of
the physieal plans into the hodograph plene wand of possible
transformations of incompressible flows around clossd pro-
files into compressitble.flows of the same t¥pe. . The present
report is an attempt in this direction. : S

The methéds .ountlined in this. repdért arée at present 're-
stricted to flows which are everywhers subsonic. .Flows of
mixed type (subsonic main flow with locally supersonic re—
glons) are of more interest from the theoretical as'wsell as
from the practical viewpolnt. It is thought, however, that
the solution of the problem of sntirely subsonlc flows is a
necessary prereqguisite for .a succeséful theoretical treatment
of the much more difficult problem of mixed ‘lows.

This investigation, carried out at Brown Universitv
was sponsored by and conducted with the. financial assistance
of the Watlonal Advisory Committee for Aeronautics. The
author is-indebted %o Mr. J.-B. Dlaz far valuabls assistance.
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SYMBOLS

speed of sound

line element in the z~plane; line element of the
profile P : '

non-~Zuclidean length of ds

line element in the {-plane; line element of the

proflle '} .
donaln exterior fo thé ﬁrofiie .P.
domain exterior to the profile [
eiponential function of { 7 =1Q(>

complex potentlal of an Incompressidle flew 1in the
{-plane, normalized so that G!(®) = 1

hodograph of a compressible flow in the z~plane

distorted hodograph of a compressible flow in the
z-plane B :

imaginary unit; subscript referring to an incompress-
© ible flow : ;

imaginary part of  ( ) -

bound for the ratio of maximal speed to stream speed
in tho conjigate 1¢cogprgseible flow

Each number

stream Mach numbgr-"

modulus of the corréepoﬁdence between two flows
gubscript referring %o the state of fiuid at rest

a function f such that |Jf/R}~~>»0 as BR—=R,;, R,
being some specified limit
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0(R)

'd

a funetion £ such that [f£/R] remains bounded as
. R—> R,, R, Dbeing some specified limit

pressure

profile in the z-plane
apeed

digtorted speed

speed of an incompressible flow
gspeed of a fictitious compressible flow in the g—plane

positive constant

radius of curvature of the profile P
radius of curvature of the profile [

) real part of ()
coefficlent of the.symmetrized hodograph equatioﬁs

components of the velocity

u*,v¥ components of the digtorted velocity

X, ¥ Cartesian coordinates in the z-plane

X, Y Carteslan coordinates in the Z-plane

7z =

[
it

re
]

X +-1y complex variable in the physical plane of the
compressible flow

X + 1Y sauxiliary complex variable
exXponent in the polytropic relation

¢ + 1N complex variable in the plane of the incompress-—
ivle flow

angle between the velocity vector of the compressible
flow and the x-axisg
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Gi © angle between the veloclty vector of the incompress-
ible flow and the f-axis ’

A logarithm of the dilstorted speed

o value of the distorted speed mt infinity for Y = -1

E, N Cartesian coordinates in the {~plane

M profile in the {-plane

o density

E - density of the filctitious compressible flow in the
§~plane

o velocity potential

X angle betwéen & line element ds and a streamline

v stream function

9] complex potential of the conjugételincbmpressible flow

Q4 complex potential of an incompressible flow around
the circle [Z} = R .

the point infinity; sudbscript referring to the state
of the fluid at 1nf1nity

38

() complex conjugate of ( )
10 )] absolute value of ( )

The units are chosen so that Po (Stagnétioﬁ density)
and a, (speed of sound at & stagnation Doint) are both
equgl to unity. :
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. ANALYSIS

I. GENZRAL CONCEPTSH
Fundamental Relations
It will be assumed that in & compressible fluild the

pressure p 1is a given increasing functlion of the denslity p.
The velocity of sound .a .is given by

o
Q

]
£l

If the flow is irrotatlonal ‘it follows from.Bernoulli's

equation .. .
+ JF
. Po -

that the density is & glven function of the speed gq. Since
the preceding equation can be written in the form

.' 1,‘,8:

g dq + a® &2 = o
P

the Mach numbe:r M = é/a is given by the relation

so=1, pg=1° )

(the subscript o referring to the state of thﬁ fluid at
rest). This is equivalent to the introduction of dimension~
lesgs variables a/ag, . P/Po~a Ch -
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The pressure~density relation used in gas dynamics is
of the form L

p = A + Bp" (2)

This relation includes the case of an isdthermal flow, where

'Y.=l. (5)

and that of an adiabatic floﬁ,with
1< Y< 1,66 (4)

(The standard value of Y for air is 1.405.) The value

Y = 2 .corresponds to the analogy between a two-dimensional
gas flow and a floy of ‘water in an opén channel; (cf., for
instance, Von Karman, reference 12.) In the foregoing cases

A = Qll B = pc
The differential equations of a potential gas flow are cone

siderably simplified by introducing the linesrized pressure-
volume relation with

y=l1 (8
and
- - 2 "B = —a® o2
A_Pco+acopco' B = o P

.

where the subscript o« refers to the state of the fluilid at
infinity, and a&., P, By have been determined according to
the actual pressure~densitv relation (with A = 0, B = p,,

¥ > 1), Using thls relation amounts to replacing the curve
giving the actual pressure-density relation in the (1/p, p)-
plane by ite tangent at the point (1/p., Hn). The 1inearized
presasure—~density relation has been introduced dy Von Karman
and Teien (references 11 and 12),(and formerly in a less gen-
eral form by Tehaplygin (reference 6), Demtchenko (reference
10), and Buseman (rpgference 9).

The relations between P, M, and q .obtained from .
(2) depend only upon Y (and not upon 4 and B}, For V=1

5
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p = ‘:e"'q-fe/-g < (6)
M= gq (7)
for Y #£ 1 L -
2
- ..2 - )
/SRR S (9)
Y -1 4
1l - q®
2
so that for Y = -1 .
. .1
P B = (10)
1l + q_B
M® - 9% ’ (11)
e : T + q% s
and
p% = 1 = M3 (12)

3 In figure 1, P is Plotbd&.aé-é‘ﬂhﬁction of gq (for
Y = -1, 1, 1-405), N wi

For ¥ = -1, the flow 1s always subsonic. For Y # 1,
the flow is subsonic as long ae

q<qs=./a,:'z""""f | (18)
+ 1

It will be convenient to ‘wee the distorted speed q*
(first introduced by Busemann (reference 9))

3 , | _
s?-expf l-qu - (14)
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g% = 1 for H =1 (15)

o - =% G

for Y > 1
Y1 |3

1 -/1 =M31 2 + /(v 1)/(Y+1)/1 - K3 o1 (17)
1 +/1 - MR 1 - SO = 1)V + 1)L - MR

and for Y = 1

q* =

q* = — B (18)

(In fig. 2 g and q* are plotted as functions of M for
.y = 1.405.5 v v

For an incompressibie flﬁw p 1s constant, ¥ = 0,
and g% = q.

Equations of Motion
. The x and y components of the dimensionless velocity

of a two-dimensional potential steady gas flow, u and v,
satlisfy the condition of irrctationality o T

l
t
|
I

Q0
< =
VI
w{<
o

and the continuity equation .

9(pu) ,.2(pv) _
3= f 3y °

These equaticns imply the exigtence of a velocity votential
p(x,y) and of a stream function Y(x,y) so that
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- Ox 3y
and . . ,
_ a ox . . oy
It follows thHat e o ;fﬁi.ﬁ' ;
So _ L ow
dx p 9y
. : (21)
Sp 1 oW
oy p o

The eliminatlon of either ¥ or ¢ leads-to the second-
order equ&tlons S . - L

HE R 131X e
HOORETO

The fundamental equatlons (21) to (23) are of a purely kine-
matliec nature and hold inaependently of the..equation of state.
If the density p is c¢oneldered ae =a given function of

space (p = p(x,y)), the equations (22) are linear.and always

of the elliptic type, no matter whether the flgw 1s subsonlc
or superesonic. :

However, the important case ie that in which the density
is & given function of pressure and therefore aleo =& glven
function of the magnitude of the (dimensionless) velocity

u? + v3, (Cf. precedin sec.) In this. case equations B
%21) to (23) are non-linear %more precisely: quasi-linear).

The velocity distribution in a given flow ie uniquely

determined by the boundary cdnditions and by the functional
relation
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- — C 2 a
p=1=(q), q-= J/<§£> + %?

This remark justifies the use of the relation Y = -1 for
subgonlic flows of not too high Mach number. For, replacing
the actual value of Y by -1 changes the function p = £(q)
(and the differential equation for ), q < 1, only :
slightly, (Cf. fig. 1.) Prom the eguations given in thse
preceding section, 1t follows that the change of p 1is of
the order of magnltude

 Molenbroek (reference 5) and Te¢haplygin (reference 6)
showed that linear equations can be obtalned by considering
¢ and Vv as functions of a and £, where § 1s the
angle between the velocity vector and the x-axis:

B = (tan—?t) % (24)

~The équations take the form

Sp _ 4 3V
; o8 P g (25)
S99 . . 1 (1 . uR) ¥
aq_ [al+} 'ae v

-

These equations can be brought to a symmetric form by replac-
ing the independent variadle g by

A = log gq*

q* being the distorted sveed. 3By virtue of (14), (25) can be
written 1n the form

O _ 5
38 A
(26) .
o _ _np S¥ ]
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with

T;? — S . (27)

For the ig@thermal”caée (Y =.l)? : :

T =Nl g® e (28)

For the polytropic case (Y >:1) -

o : <i-_-'¥--+r 1 -q-s>%
T = 2 :
<l _ v ; l q2>~%.‘(“(+l)/('Y—-l)

(29)

For the case of the linearized equation of state (Y = -1)

T = 3 - (30)
and equations (26) are Cauchy-Riemann equafion§} .In figure 2,
T 4is plotted as a function of the local Mach number M (for
Y = 1.405). It should be noted that- T is a known function

of ¢ and therefore also of q*-.

The main advantage of the symmetric form (26) consists
in the fact that the symmetric equations are invariant under
conformal transformation of -the €, plane: If new irde-~
pendent variables ¢ and TN are introduced by settlng

£ + in = F(g + iA)

F being an analytic function, then

0)'0)
wee |3 -
ft
=1

. (31)
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. r{q [q* e.m ]}

In fact, (26) can be written in the form

with

%ﬂ+@@_ Ji+iﬂ
o6 omn 98 ot AA a7 oA

28
yj
+
3k
2|3
1
f—A—\

[o¥ of , 3y om}
3t 38 © om a}

Eliminating the derivatlves of '€ -and T Dby means of the
Cauchy~Riemann equations ' —_—

yields ~(31).

In particular, the distorted velocity may be deflned asg
follows. - - ' : oo

woio fvem 1B 2 geomi® C(ap)
Then
J%&“: - _JL
. On¥* v : ' o
L ) (33)
Po _op.oow - |
Av* au* »
Since T 1is a given function of u*?2 4 v*8 = q%38, the sec-

ond-order egquations obtained from (33) are
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Ap - 2 L1 (u* B0 4 oyx B0 = 0
ou* Qv*

where

A = (3%/3u*B) + (33/3v*2) and  T' = aT/dq*?

Disgtorted Hodograph of a Flow around a Profile

Only the following types of flow will be considered in
this paper. The flow covers the domain exterior to a pro-
file P (domain E(P)). At infinity the flow approaches a
uniform flow in the positive x-direction, so that

lim " uw=gq_ 50,  1lim v =0 (3aY
xPHyRese . xP4yRs e

The flow is everywhere subsonic (i < 1). The profile P is

a streamline of the flow; P 1ig a piescewise analytic curve
possessing at most two sharpy edges. If there are sharp edges,
the Kutta—~Joukowskil condition is satisfied. There are exactly
two stagnation points, both situated on P. A uniform flow

u = constant, v ='0 4is excluded. (For the sake of mathemat-
ical discussion it is convenient td admit as "profiles"® P
curves which intersect themselves in a finite number of
points. The exterior E(P) 4is then a partly multiply cov-
ered Riemann surface.)

Incompressible flowse considered will be subject to the
game restrictions, except that the edges need not be sharp,

The transformation
w = u(x,y), v = v(x,y) (35)
takes EB(P) 4into a domain E of the (u,-v)~plane; HE (the

hodograph of the flow) is,in general,multiply covered. The
transformation
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E]
u*¥ = 4.y = g¥ cos §, - v¥ = ﬂi.v = g% sin @ (36)
q . t- . " ' : q .

takes B(P) into & domain H* of the (u* ~v*)-plane. This
domain will be deroted "as thé distorted Hodograph of the flow
(q* and =B ere the polar coordinates in the (u*,-v*)- plane/.
(cf. fig. 3, (a), (v), (ec).

It 1s known that in the case of an ingcompressible fluid
the mapping of the flow into 1te hodograph is conformal, It
will be shown that the mapping of E(P) into H* can be con-
sidered as conformal if angles and distances in E(P) are
measured by. means of a certain Rlemannian metric generated by
the flow,

'Trapsformations Oonformal with Respect to a Given Flow

Given a subsonic compressible flow covering a domain D
of the (x,y)-plane, ILet ds = (dx, dy) be an infinl:tesimal
Yine element situated at a polnt =x,y of D, ‘M the valve
of the Mach number at this voint, and ¥ the arngle between
dse and the streamline passing through x,y. The non-
Euclidean length of the lins selement ds shall be defined as

as = asyf1 - M® s1n® x (37)

Let . &« be the angle between the line element ds and
'the x~axis.  Bilnce. X = *(8 - @) and d4x = 4s cos o,

dy = ds sin o, it is sasily seen that (37) can be written
in the form - - : . -

as® = e ax® + 2f dx 4y + g dye‘ - (38)
whgre_ | | )
e = 1 - M® s1n® 9
R A= Mawsin,e_ccs‘e ' (39)
1 a-Msicos?-e'

®
I

.

Thus (37) is a Riemann mesrie.
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The non~Buclidean angle A between two line elemente
ds = (dx, dy), 6&s = (8%, 8y). -situated at the eame point
Z,y 1s defined by T

cos 4 = 2 dx 6x + £(dx 8y + dy 6x) + g dy 8y
' v as &8

§S ©Dbeing the non-Buclidean length of &s.

A transfornation
£ = t(x.7), Tn = ) (20)

of D 4into a (simply or multiply covered) domain A of the
(¢,N)-plane will be called conformal with respect to tke flow
if it preserves the pense of Trotation and takes each non-
buclidean angle & (in the {x,y)-plane) into the FBuclidean
angle . 4An equivalent definition is the following. The
transformatlon %40) ie conformal with respect to the flow if
it preserves the sense of rotation and if the ratio

dU
A= - a5
where d48 1is the non-Euclidean length of a line element ds
in the (x,y)nplane and ' do, +the Euclidean lengthk of its
image in the (€, n)~plane depends only upon the position (but
not upon the airect*on) of ds. The symbol A is called the
locel factor of magnification.

If D ig mapped conformally with respect Ho the flow
into A, and A is mapped conformally (in tke ordinary senes)
into A', the resulting mapping 6f D into A' is conformal
with respect to flow. Conversely, if D 4is mapped conform-
ally with resPect to the flow into both A and A', the re-
sulting mapping of A into Af "i{e conformal in the ordi-
nary sensge,

Any transformation {(40) of E(P) into the (£,MN)-plane
is conformal with respect to the flow if the potential
function ¢ and the stream function  coreldered as funcw-
ftione of ¢ and N satisfy the dlfferential equations (31).

. This follows from lemma 1 proved in the appendix bv set—
ting A = 1/p, B = T. .
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If the foregoing result is used and it is noted that o
and ¢ satisfy equations (33), the following important theo-
rem is seen to be true: :

The mapping. of the exterior  E(P) of a profile P into
the digtorted hodogra aph of a subsonig cormpressidble flow
around P is conformal with respect to this flow.

Mapping of a Compressible Flow into a Domain
Exterlior to an Arbitrary Profile

The distorted hodograph of a flow around an airfoil 1s
a slmply connected Riemann surface bounded by a closed curve
(the image of P). 3By a known theorem of function theory, 1t
is possitle to map H* conformally into an ardbitrary simply
connected domaln, Therefore, it is possible to map I(P
conformally with respect to the flow into the domain. Z(M) of
the (¢,MN)-plane, exteridr to a given profile I, The mapping
can be chogen so that the point tE + iTN = o corresponds to
the point =x + 1y = © and that the horizontal direction at
infinity is preserved (i.e., at o the direction parallel %o
the x-axlis is taken into the direction parallel to the ¢~ *
exis). Purthermore, by eventuwally changing the size but not
the shape of 1. it is possible to obtain a mapping for which
the local factor of magnification is equal %0 1 at infinity.
Since at infinity the metric (37) approaches the metric with
constant coefficients .

a5% = ax® + (1 - M®)ay?

the above oond;tions mean that

EZ BN na-—k'm, %i—‘-?l, %5—90

M _so0, M5/ 1 - M2
- 3y
as -

(21)

x® + ye——;»co

A transformation satisfying these conditlons will be called
nsrmaliged,
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If E(P) 1is mapped conformally with respect to the flow.
into ®E(M), the resulting correspondence between the points
of H* and those of B(7) 4is conformal. Therefore,

u* —~ iv* ig a one-valued analytic-function of £ + 1T and
can be developed 1n.a Laurent series for sufficiently large
values of [§ + iN|.  "The following result will be used later,

Lenma 23 If the mapping of E(P) 4into B(™) is nor-
malized, then . . Co . . o o

u¥ - 1y = g* -- .‘EE.I. __&_ + ..- e . T (42)
o T 7% o aw B o+ AT -
where . , ; _
T, = /1 - u3, 4. T ¢43)
L ) o . L
and . . ) . . .
r = /[iu dx + v: dy : . (44)

is the circulation of the compressible flow.

The proof will be found in the avpendix.

Gbniugate Flows-
uiven a compress1ble fliow (in the (x,y)~plans) around
the profile P and an incompressible flow (in the (E,7)-
plane) around a profile’ TV, The complex.potential of the in-
compressible flow will- be . denotei by Q(ﬁ) = Py + 1Wi Its
complex velocit" 13 . _ . .
e e

ag

Since it 1s assumed that at infinlﬁy 61 0, 2 can be
written in the form

o) e(g), G'()

,CD

The two flows will be called congugate (module n), if
there exists a real number .n,
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S " 0<ha <2
such thaﬁithe transformation’
L mp o dvi = (ur e ive)® | (45)

takes the distorted hodograph E¥* of the compressible flow
into the hodograph Hy of the incomoressible flow. The con-

nection between conjugate flows 1s shown in figure 3.

The mapping. (45) definés & mapping of . E(P) into E(™).
This mapping is conformal with respect to the flow around P,
Por so is the mapping of E(P) into H*; and the mapping of
H* into Ej (given by (45) as well as the mapping of Hj

into E{™) are conformal in the ordinary sense. The mapping
of E(P) 1into E(7)) "preserves thd point infinity and the
horizontal direction at infinity (for at infinity both flows
are horigzontal), On P (on 1) 6(61) is the slope of the

profile. According to (45) the slopes at corresponding
points are connected by the.relation

61 = n¢ ; (48)

("he slope is defined as the angle between the tangent to the
nrofile and the positive x-axis; the tangent pointing in the
direction of the flow.

Conversely, if it 1s vmossible to map E(P)} into the do-
main "E(71) in: the . (£,N)=plane exterior to a profile i, by
a transformation which ie conformal with respect to the com-
~pressiole flow arnund . P, which preserves the point o« and
tho- horiwzontal direction at- infinity, and which chahges the
slope of P according to (46), then the flew around P 1is
conjugato (modulo n) to an incompressible flow around ! |
whlch has stagnation poinks at the points into which the
stagnation polnts at P are taken and the direction at in-
flnitv of which is korizontal (provided such a flow exists).

For, let G(Q) be the complex potential of such a flow,
G'(w) = 1. Set

Cug - i, o= g 61(g)

The manping of B() 1into H* is conformal - that 1is,
u* - iv* 1is a one-valued analytic function defined in E(M).
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Therefore, & = ~Im log(u* -~ iv*) 1ia harmonic in E(FU' ne
coincides on. 1. with the . harmonic function
81 = -Im logluy -~ ivy). Therefore, (46) holds throughout.

E(™). Since =n log g* 1is conjugate to n® and
log:qy = log fuy - ivy] to 03 '

?19g'qii= n log g* + constant
'The above constant must vanish, for at infinity

xRt = qi;m
Theféfor;
T Q*B = q4 : (4%)
and by (46) and (47), (45) nholds. |

- If an incompressible flow i's conjugate to a subsonic
compressible flow, then

: Qifmax_g'k . . : R (48)
%1,

’ .
P

where. .if;ﬁax ie the maximuﬁ gpébd,an& 'K depends upon n
cand the stream Mach number - M, of the compressible flow.
For' gq*pax oust be leés than 1 (ecf. (15)) and therefore, by
(a7) : ' ' '

a q*
i,max _ ( max) < q* . (49)
%,

Note that g¢* 6 1s a function of 'q_ &an& therefore also of
M. :

If the incompressgible flow with the complex potential

Q(t) 18 conjugate to a glven compressible flow, so 1s the
flow with the complex potential

T 00, 4 >0
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for ft has the same hodograplh. Thus the conjugate profile I}
can be chosen so that the mapping of E(P) into E(7)  'is
normaliged, ' : o ' -

If e incompressible flow around. [l conjugate tg a, |
compressible flow arcund P 1is known, then the velocity dis-
tribution (and therefore the pressure distribution) around P
can be immediastely computed. For (46) gives the correspond-
ence between tle wpoints of !'I and P, and the specds at
corresponding nointe are given by (47)., EKowever, the present
method has not been developed sufficiently to permit a solu-
tion of the direct nroblem: to find the incompressible flow
conjugate to a compressible flow around a given profile P.
The followinz sections contain the solution of the inverse
problem: to find a ccapressible flow around a closed orofile
conjugate to a given 1lncompressible flow, and the discussion
of the exigternce of conJugate flows, which is by no means
gelf-evident.

II.- CONSTRUCTION OF SUBSONIC FLOWS AROUND A PROFILE UNDER
THE ASSUHPTION OF THE LINEARIZED EQUATION OF STATE

Simplifications Resulting from the Assumption Y = =1

Throughout this chapter the pressure-~density relation l1ls
assuned to have the linearized form -~ that is, Y is set
equal to =1, Under this assumption it can be shown that under
‘very ‘general conditions each compressible flow possesSses &
conjugate incompressible flow and vice versa. The inverss
problem can be solved completely and in a closed form,

The assumption ¥ = -1 ;mplies the'following gimplifi-
cations, ' ‘

I, The differential equation of the potential o in the
physical plane takes the form

(1.4 +v®) 9%v. . 2uv EESL.+ (1 + u?) 3% - o

ax® A%y 3y*®
mn = a_CQ; . »'V' = ESQ (50)
ax oy
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(of.. 92) and (10) ) Thus the- surface

Pt
e = .

2= olzay) o o L (s

(potential surface): is''a minimal surface (surface of vanish-
ing mean curvature).

: 2. The non-Buclideéan .length - 48 o6f a line element dsg
in the (x,y)-plane (ef, sec, Transformations Conformal with
Respect to a Given Flow) becomes equal to

a8 = d1/1 ~ M?

where 41 1g the Buclidean lenghth of the line element on
the potential sgurfaces the projection of which is dsp

:for, if. tbe angle between the direction of the velocity
vector and ds is denoted by X, 1t follows .from (37) that

I PR .t H . L -

Gl + ua) dx '+ 2uv ax iy + (1 + va) dy

AT
o

FRS 5 S
it

L a;u.:": dﬂ + (u dx-+ v dy)B

as® + ds? a® cos® x

-

3. The term ¢ + 1Y 18 an analytic function of u¥ - iv*
and of the gomplex varjable in any plane into:which I(P) isg
?ap ed conformally with ¥espect to the flow._ (Cf. (30),

33

Existence of Conjugate Flows

It will De shown presently that to0o any compressible flow
around a profile P in the z-plane (obeying the linearized
equation of state) there .exists = conjugate flow of.-an incom-
pressible fluid around a profile {1 in the ¢ plane, nrovided
either of the following two conditions 1s satisfied,
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(a) The compressible flew is circulation-~free. In thisp
case the modulus n can be chosen at randém, In particular,
it is convenient to set n = 1.

L (b) The compressible flow possesses a circulation and
thé Mach number at infinity is restricted by

JE/E = 2
M,<J/B/¢ = 0.866 . . . (52)

In this case the modunlus n is given 5y_

1

n:......_.——-.

VAN

(53)

(Cf, fig., 4.)

Tor thg proof, map E(P) into the exterior of a circle
bl L in the Z-plane (Z = X + 1Y, R Ybeing a conven-
iently chosen constant) by a normaligzed transformatior which
is conforwal with respect to the glven flow. Then the corre-
spondence batween the distorted. hodograph H* of the com-
pressible flow and the domain [Z} >R is conformal - that
ig, u* - iv¥ 1is an analytic function of 2, By lemma 2,
this function has the form

u*_iv*=q*-.]_'.1-_‘_1..3'.+.__ (54)
, = Bm 2

I'y being given by (43). TPurthermore, o + iV 1s an ana-
lytic function of wu* ~‘iv* and therefore also of Z,

[Z] >Ry V¥ =0 on [Z] =R for ¥ =0 on P, If Z goes
once around the circle |Z] = R, o + i¥ increases by I'.
Next,

14m 2@ . .lim _9 3x 4 2w 3y

r:qm

l1im 22 =  1ip 482 93X L Bw ¥ _ g
L — 3

Y 5 5 elox 3Y 3y oY

for the mapninp is assumed to be normalized It follows
that - : .
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o + 1y = q@(Z + Bf> - il log 2 + constant = Ql(Z)

Z ‘2m U Coe
Thus o + iy is in the Z-plane the complex potential of a
flow around the cirecle [Z) = R, This flow necessarily pos-—
sesses two stagnation points on the circle 17212 Ry namely,
the images of the stagnation points on P. TFor at these
points the lines V¥ = constant intersect the circle. 1%
follows that

alp + 1w (l _ R\ iri1 55
. 4z o za e Z (55)
vanishes at the same points _(Z = 5,, 2 ;:se;'si = —Ea) as

does u* - iv¥,

Agsume that there exists an- incompre331ble flow around
& profile .1 in the (-plane which ‘is conjugate (modulo n)
to the compressible flow around P Let

= Z(ﬁ)

map E(™) conformally into [Zl >R taking . { = = into:
Z = o, Without. loss of generalitv it may be assumed that

2 () ="1' "

Then the complex potential () = Qs + L¢3 of the incom-
pressible flow must in the Z-plane be of the -form:

0 =252 (p ¥ 1)

[«-]

The complex velocity of the conJugate flow, ug - 1ivy,
ig glven by

d
ui—ivi =E%

On the other hangd,
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Thersfore

| éﬁ = QQ, &0 _ q% dJQ + iW) * * )2
az ~ az/at T q_ (¥~ 1v)

so that

':fg(z) = !/[k*n 1 - ®%)7° ,fir/Zﬂ?q@Z 4z (56)

(u% - iv¥)®

The numerator of the integrand in the above formula
possesses simple meros at the two stagnation points. It can
be easily shown that at the two stagnation points (in the 2Z-
plane) u* - iv* ' vanighes of an order not higher than 1.

For at these points Im log(u* - iv*) = -0 ©possesrss Jjumps

of magnitmde €1T, €17 and egm being the angles at the |
stagnation points on P. Therefore =Re log (u* - 1v*) = log g*
behaves at these polnts as ¢qloglZ -~ Sy]). And it has been
assumsed. that P possesses only sharp edges if any, 80 that

0< €3 < 1. It follows that at . S;. amd Sz the integrand
becomes infinite of an order less'ﬁhan'l, provided 0 < n < B,
At all other pointe Z, (2] > R, the integrand ise different
from both © and o. Eence the integration can be performed
also along the circle 12)

Now, since ! was assumed to be a eclosed curve, the
integral (56) must vanish 1f the integration is performed
along the closed circle [2] = R, By (54)

S R | LI, |
(u* ~ sy*)® 7 gwn ( a* 2n 7 e '>
co <o

so that the integrand in (56) equals

1+ n N ) >.__ =+ ..
21 Z

In order that the integral‘takeh"élbng”a closed curve should
vanish it 1e necessary and sufficient that

nl r
- :" =a 0,
a* q :

x
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or, by virtue of €43), that - ,
(o1 - ¥ m 1)T = O . T (87)

This condition will be satisfied if either I = 0 or n 1is
~determined according to (53). In this last case the condi-
tion n < 2 yields the bound (52) for - Moo,

P

conversely, if (57) holde and n <.2, the function (56)
maps [Z] > R conformally into the exterior of a closed
profile 1 4in the {-plane. (Note that the derivative of
this function does not vani'sh.,) This mapping satisfies the
conditions

o) = e, () =2

The resulting mapping of E(P) into B(T)  is conformal
: with resnect to ‘the flow around P, Ohviouslv, .

%1
A EQL-QI[Z(Q)J.,

. %
ie the-eomplexﬁpptential of an iﬁcompressifle flow eround 1,
The complex vealocity of this flow is ecqual to (u* — iv*)a,
Thus the flow is condugate to the compressible filow arotind P
and the. assertlions: formulated 1n the beginning of thie seC-
tion are proved - . . M .

Properties of the Gongugate Flow
From the construction of tne congugate flow given in’ the

preceding section, it follows that the circulation of the
conjugate incompressible flow is equal to’..

g% _— Mn“ WS- M3
q fe o3 (1 1 - l"am>

(I being the circulation 6f thé compressible flow), provided
M has been chosen so that the mapping of Z(P) into B@OT)
is normaliged.
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Tor the conjugate incompressible flow the ratio
qi,max/qi,m cannot exceed K = q*-2, (Cf. end of pt. I.)

FOI‘ 'Y = —-l’ . . h .. ) -
. . A
K =21 *s/1 - M% for n =1 i
: - . S
T V. LN (s8)
w5 L/ 143 b
X = 1 +/1 ~ MG for n = 1/ ﬁfjf]ﬁ;
- ceaee - Mm - . . : 4 , . .
(The #aluesuof.-K' are plotted‘ih fig, 5.)
It should be noted that the profile ! ! constructed in
the preceding section is necessarlly closed but need not be
simple ~ that is, !} might intersect itself, in whichk case

E(71) would be partly multiply coverod. . For this reason such
physically impossible flows were inc*uded in the diecuesion,
It is easlly séen that 1 "will always be simple if P is
convex,

-

Solution:of'the—lnversa Problem .

Suppose that an incommressible flow around a profile T
-in the’ {~plane is given and it’'1s" known that this flow is ° .
conjugate (modulo n) to a compressible flow around a profile
P - in %He z-plane, “This section contains the dérivation of
the formulass whiéh permit finding P and the compressible

flow around P, It will turn out that these - formulas always
vyield a compressible flow around a closed profile, even if ,
'l and the flow around f7 _are chosen at random.

Let the complex potential of the incomnressible flow be
given in 'the form-

QL) = gy, o), 'e-x'cm>'='1 - SN

Since o + iy (complex potential of the compressible
flow) considered as a function of { 1s-analytlc end real
on 1 and since alp + 1y)/dt vanishes 8t the stagnation
- polnts of the incompressible-f‘o .

@ + 1y = CG({) R ' o .
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boriep

C Dbeing a positive constant. Without loss of generality 1%
maey be assum@d that. the mapping of E(P) -into EB@) 1is
normalized : Then R :

C=q_m

Xow, 16t ds ©be a line element on P &and do the
corresponding line element on. (1, Then

On the other hand, on P . T .

Since the increase of @ on ds 1s equal to the increase.of
® on 4¢, end since gq; ¥ q*t,

88 | 9» 1 - % 9*
- . n
CRTWETENT
By (18) ' :
g* 1 ( s
—_——— = = 1l = Y
g 2 %)
g0 that ' U o
) ds q'*n"‘l - q*n+l
..... To- T _
,.,q:n 1 "”q;n+1 s
S T O PUNNME WOC 1y TR ST SRy D :
= Lyl _ay ”/n o q; 1/p (59)
. gB=1 o gxn+l
. b A=~ PR =~ B

Since
Car = ap, 16 = grRle(L)]

{59) can be written as o Y



P
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a0 1 - ue

as _ ;}-——{mwgnl“l/n - uzlG%é’.)]”‘/n} (50)
vhere u = q* - that is,
1 +/1 - MZ

Next, let dz and af{ Dbe the complex line elements on P
and I}, respectively: :

as oib = ds elei/n

dz =
af = dao eieil
Then :
dz = %% do ¢161/n (62)
Since

—— st

e (e) = e1(t) ol®1 - Gi(f) e~1bs

thers 1s obtained by 780) and (62)

as =‘__3;~5 {%,(§)1~1/n it - u? G‘(§)1+1/n d§}
RS S

-

Integration yields the following representation of the pro-
file P:

7z = constant-{ G'(galff/“ af - na-/PG'(§)1+1/n dC} (63)

the integration being pérfﬁrméd along !, (The value of the
constant factor affects only the size of P.) N

For a circulation-free flow and n = 1. this formula
simplifies to ' ' : '

z = constant-{g - paJZQG's afg }»' (64)
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(64) and (61) are exactly the formulas given in Tsien's
paper (reference 14).

Parametric Representation of Subsonic Compressible Flows

Forrulae (63) has been derived under the assumption that
the integration is being performed along |! and that the
existence of a conjugate compressible flow is known before-
hand, 3Both .conditions are unessential, TFor the following
general result holds:

Let G(f) be the complex potential of an incompressidle

flow around a profile {t in the ¢ —plane,

G' (o) = 1 = (65)

Let ¥, be a real nuﬁfer-such that

0< My< 1l if G 1is one-valued,

0 < Moo <AN3/4 if G is multi-valued.

Mm . - . . %

wo= &66)

2
1+ 1 - M5

% 1 +8, 0<8<1l, if G 41is one-valued

- | (o7
1M1 - M3, if 6 is multi-valued
K = p.—n ’ ) (68)
If for t e¢E(), ' |

fer()l < x : (69)

then the function

z = o{f e ()M g u"f@*(m“’l/n dg} (70)
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a one-to-one manner into the exterior
ile P in the z-plane taking { = o

¢ >0, maps E@() 1
E(P) of a closed pro
into 2z ~»», and .

2
£

@ = =20 # Re G{‘C) (71)

conpidered as a function of = and y 4is the potential of
& subsonic compressible flow around P (obeying the linear—
ized equation of state) of stream Mach number M_.

Phe twg flows are conjugate (modulo n). The mapning of
E(P) into ZE() is normsliged by choosing O = 1/(1 ~ pa3).

The proof of the mapping properties of the function (70)
will be found in the appendix under C. Since the mapping of
EQT) 4into E(P) 1is one-to-one, ¢ may be considered as a
function of (x,y). Equabions(?O) and (71) may be rewrltten
in the form

x= Re £f{(), ¥y = Re g(l), ®© = Re h({) _ (72)

where the analytloc functions £, g, and h are given by

£(¢) = © /ﬂcetl-lln L uE ina/ny g o
g() = ~;cd/n(afl~l/n + p® gri*i/ny 4
h(f) = =0 ; G
Since
- a'? = o

f t

(?2) is the well-known Weierstrass parameter representation
of & minimal surface. Hence, o(x,y) satisfies equation (50)
and therefore is a votential of a compresseible flow.

It is shown in the appendix under C that as { —> o

ox

ag"‘>c(1"“2)' §5~>o, oY o, —g-z~>c<1+u3>

ot
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(Cf. (63),) By (65) and (71) thie implies that as z —> o

m’--"->

— 2B 8 _ o o
ax 1 -~

2 ay

Thue, at 1nfinity the compreseible flow is parallel to the =x-
axis and

2 M,

S TS Y ST

so that M_ 1s actually the stream Mach pumber.

It ig alsgo sghown in the appendix under € that the direc—~
tion normal to [T 1g taken into the direction normal to P,
Since the normal derivative of @ on 1 wvanishes, ,s0 does
the normal deriyative of ¢ on P. Thus P 1lg a streamline
of the compressible flow. :

The fact that the two flowe are conjugate follows simply
by comparing the velocitles at corresponding pointe of P
and ', The details of this computation may be omitted.

From the preceding section it follows that the paramet-
ric repreeentation (70) and (71) yields 2ll flows satisfying
the conditions stated in the beginning of part II. (Note
that neither 1 nor P are neceesarily simple curves,)

Congtruction of a Gompreaéible Flow around & Profile
Similar to & Glven Profile

Suppose & profile. Py and a point S on thie profile
are given and 1% je deeired to- find & subsonic compressible
flow around =a profile P- gimilar to P,, poesessing a pre-
scribed stream Mash number M (M, </3/4) and a.stagnation
point near the pgint S, (8ince S 1ie determined by the
angle of attagk the last requirement determines approximately
the position of P with respect to the undisturbed flow.

This problem caq be solved as follows

For the gake of dafiniteneee 1t will be asgsumed that the
profile P, has one sgharp (trailing) sdge. It may be asg-
sumed that the function mapping P; conformally into & cirecle
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'is known, In facet, this function can be easily computed.
(See reference 13.5 The first step conslsts in forming an
incompressible flow around P; which possesses stagnation
points at the trailing edge and at 8. The direction of
this flow at infinity is taken as the §¢~direction in the
plane of P, ({-plane). Now, if E(P;) 1s mapped into

1zl > 1 bv ‘an analytic furnction e ' .

Z = F(¢) (73)

which satlsfies the c&ndifians
Z(0) = @, 2Z'(0) > O

then the sharn trailing edge and the point 'S are taken into
the polnte e~ ia , respectively, . @ being real (cf. fig.

G/v

From Y, 1s determined the modulus 'n by (53); Now,
letr C;  and O5;. be two circles pasgsing. through the points

e"i@ 844 aéi“ "which intersect at the angle nm. The

funection” t . . o vl
L= Fi(E) _

inverse to (73) maps the infinite domaln bounded dy sn arc .
of C; «and an arec of C; into the exterior of some closed

profile 1, Profile [l possesses two singular points: the
tralling sdge which colncides . with the trailing edge of- P,
and the point S. The angles trhere are np and am, B

being the angle at the trailing edge.of .. P,.

Since a domain bobunded by two. circiilar arcs can easily
be mapped into the exterior of a circle, 1t is easy to com-
pute incompressible flows around -1, '

From M, is determined  q, w (by (11)) and g% (by
(18)). Let G(t) Dbe the complex potential of an 1ncomuress~
ible flow around [, which satisfise the Kutta-Joukowski
condition at the trailing edge and the condition

G (=) = 1
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It is easlily seen that this flow possesses a stagnation point
at 5. The same is true for the flow with the complex poten~
tial :
= i 11
a4 ,o0 G(g)- q.i’m Q.’;

Jow a compressible flow around a profile P 1s con-
structed which is conjugate (modulo n) to the above incom-
“pressible flow; P 1s given by (70). The velocity potential

is given by (71), The distorted speed g* of the compresse
ible flow at a point 2z of P is equal %o :

q* = qilfn

94y Dbelng the speed of the incomnressible flow at the corre-
sponding point of 1y TFrom g%, ¢q 1is determined by (18).

Since the angle between the x-axls and the tangent to
P at a polnt =z 1is equal %o l/n times the angle betweon
the f-axls and the tangent to [l at the corresponding point
{, it is seen that the profile P will possess only one
sharp edge, the angle there being B.

The profile distortion (i.e., the difference between P,
and P) is due (1) to the difference between P, and I and
(2) to the difference between [! and P, Thig distortion
will be small if M, is not too large,  For then uw® 1ig
small and 1n close to 1. (See table II; in fig. 4, n and
B? are plotted as functions of M_.) Therefore, the circles
C,, O are close to the unit circle and 1 close to P,.
Secondly, 1~1/n will be small and therefore the first term

in (70) will be close to { while the second term will be
small as compared to the first. : '

0f course, 1t is poselble to construct {1 in many
other ways. If the flow around P, which has a stagnation
point at S 418 circulation-free (i.e., if a = 0), it is
.possible to set =n = 1, Then P, coincides with .
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‘Alternative Formulas

It is unueeful to write the formulas transforming an in-
compressible flow into a compressible flow in:a different
form, The (dimensionless) speed at infinity. g, will be
used as the paramebter characterizing the flow.

" From formulés (52), (61), and (11) it follows that
n =41 + ¢ . | (74)

B2 = (75)

A - 1
n + 1

. The function mapping the profile [1 into the profile P
takes the form , '

7 = i%/@'(ﬁ)l—l/n at - E’%‘—l' /’G,(§)1+1/n at (76)

The potential at the comvressible flow is given by

v =./0% - 1 ¢ (77)

(The arbltrarv constant appearing in (70) and (71) has been
; -chosen as, 1/(1 -.p®) = (n + 1)/2).) Finally, the speed ¢
of the compressidble flpw-around P is given by

s@sD? o /?
.1 ~ <n - 1\‘G,(§)lz/n

n + 1/

(78)

ThlS Pollows immeéiatelv from formulas (47) and (18),
noting that in this case

1 '
qy a® G
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Tsien's simpler formulas which are valid for the case
of a circulation-free flow may be rewritten similarly.

z;zl_::_l.g_s_:__éfe'(c)a at
2 2 . .

(5 Yoo

(79)

n + 1

L Gl

P is given by the same formula as before (formula (77)).

q =

IITI, CONSTRUCTION .OF SUBSONIC FLOWS AROUND A PROFILE
UNDER THE ASSUMPTION OF THE ACTUAL EQUATION OF STATE

Existence of Conjugate Flows

In this chapter it is assumed that the pressure-density
‘relation is not of the linearized form but a genéeral one,
say the polytropic relation (Y > 1). It will be shown that
the conegtruction of a compresgsible flow for a gilven conjugate
incompressible flow reduces 40 the solution of a bourdary
value problem for a linear partial differential equation in
the physical plane of the conjugate flow. '

The discussion of the existence of 8 conjugate flow for
& given compressible flow around P can be carried out in
the same way as previously. The essential difference con-
sists in the. faet that . so far it has been impossible to char-
acterize completely all compressible flows possessing conju—
gate incompressible flows.and to determine a priori the
modulus n.

Consider a compressible flow around & proflile P in the
z-plane. It has been shown that it is possible to map B(M)
into the exterior of a circle ]Z( = R Dy a transformation
which is conformal with respect to the flow and normalized
at infinity. The two stagnation points of the flow arse taken
into two points o
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’TZI = Re~la, gz - Re~i(a+8)

The flow will be said to satlsfy condition A 1if
8 =_:lT - "2a

thet is, 1f

Assume that condition A 1g gatisfied, and set

I, = =47 q R sina .o - (80)

0<r /r< 2./1 - M2 - (81)

(I being the circulation of the comwressibdle flow), the
flow will be said to satisfy condition B, If T = 0, condi-
tion B implles that ry, = 0. :

If

In the case ¥ = <1, ¢ + W 18 an analytic function of
Z; condition A4 is always gsatisfied and P 1s equal to I.
Theraefore condition B is satigfied for

I =0 and for I # 0, M_<.,/3/4

It is conjectured (but has not been proved) that A 4is
always satisfied and B 1s satisfied if M, does not exceed
some limiting value. ' ' ' '

" Condition A 1is certainly satisfied (by reasons of sym-
metry) if either of the two geometrical conditions holdwe:

(1Y P 1s symmetfic wlth respect to the x-axls and the
flow is clrculation-free.

{ii) Both P and the flow arcund P are symmetric with
respect to the y-axis. (This type of flow includes flows
with eirculation.)

Plows of type (1) obviously satisfy condition B. In
general, it may be assumed that B will be satisfied Iin many
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cases, For the flow satisfying the linearized equation of
state is a rather good approximation to the flow satisfying
the actual equation of state and therefore DI, should not
differ too much from I. : .
If 2 compressible flow satigfies both conditions A -
and B, then it is conjugate (modulo n) to an incompressible
flow around a profile (1 in the ¢{-plane. If P =0, n is
arbitrary and may be chosen as 1. If T' # O, n is given hz

n = %§.__;J;___ T (83)
1 - K2

w

" The proof is almost exactly the same as the one given
for the special case ¥ = -1 and it will suffice to sketch
tl.e argument.,

Let Q. " be the complex potential'df'a Tlow around o
|2] = B which has stagnation points at Z; and 32 and the .
veloclity qo &t infinity. Then Q, hes the form

Ql = g (2 + EE) - s log 2 + constant
- =® - z 2 o

I', Dbelng given by (80). 'As before, u* =~ iv* is an analytic
function of " Z and has (according to Lemma 2) the form (42).
If there exists & conjugate (modulo:n) incompressible flow in
the - tiplane (around a profile 1 ), its complex potential
considered as a function of Z must have the form

Q = A2, (A & real constant)

As before, the function which maps 2| >R 1into E{T) will
be given by 7

' t(2) = ?/n i?l (u* ~ iv*)~2 a7 (83)

and the requirement that [1 be a closed profile leads to the
condition : .

‘ury, T
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or
. | . _
ar /1 -'MOO::p8 | (84)

which 1s satisfied 1f either '

or n 1is determined by (82).

Conversely, 1f (84) holds, formula (83) yields a closed
profile [1 (note that by .(81), 0< n< 2) and the incom-
pressible flow around [ which has the velocity q, _ = g*n

*

at infinity and stagnation points at ¢(Z,) and ¢(Z;), 1is
conjugate (modulo n) to the given compressible flow.

It can be easily seen that the conditions A, B are not
only sufficient bdut also necessary for the existence of a
conjugate flow,

Solution of the Inverse Problen

Suppose that an incompressible flow around the profile

M in the {~plane 1is conjugate {(modulo n) to a compressible

flow around the profile P 1in the z-plane. It has been
" shown that ¢ and Y (potential and stream function of the
compressible flow) satisfy the equations (33) in the distorted
hodograph plane, Since the: ‘correspondence between the dis-
torted hodograph E*  gand E(M) is conformal, it follows
that ¢ and V, ' considered as functions of § and 1, sat-
isfy the equations

3 _ g Bu
of an
. (85)
Sp _ g 2V
an . "3 B
and the eecond order equations ‘
1 3 fa 99} _
CwE ety s5)
9 - ¥ = 0 (87)
3¢ {T * 53 {T an}
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If the incompressible flow around M 41s kxnown, T 1is
a.known function of £ and. 7. For, K T "is a known function
of q (sese (27) and therefors also of (see (14)., And
at corresponding points of E(P) and E%ﬁ) a* and qy

(the speed of the incompressible.flow). are connected by the
relatlon .

= q*n
4= q : © . (88)
Therefore the equations (85) to (87) are linear.

The boundary conditlons for i@ and - Y are

=_o' | . (89)

QJ' [V
Wy |-8

Y = constant,

g% indicating'differegtiation.in the direction normal %0 r}}

At infinity @ and V must satisfy the conditions

39 ¢ s 6' 30 _ 50 (90)
at vZ P 3q

and
_B_\I_!_____>O, .ﬂ__éc > 0 (91)
ot a'n

where €, and C,; are positive constants. This can be eas-
11y verified by noting that the mapping of E(P) iante B
preéserves the horizontal direction at infinity. The rnumsri-
cal values of these conetants are:0f no consequence, since
both the differential equations and the boundary conditions
are linear and homogeneous.

. Funetion  must always behone;Valued; ® 1is one-
valued only if I = O, Morsover, ¢ and V must satisfy
the conditions:

grad?" é < @, ‘grad® Yy < & (92)

Thus, it is seen that the equations (85) can be inter-
preted physically as the equations'of'motion of & compregsi-
ble fluid of wvariable den31ty P which'is a given function
of gpace: '
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5 (ﬁ.TI) = —-:——E———— (93)

1 - M3

(1 is a streamline of this flow and at infinity the flow has
the positive §-~direction.

Assume that ¢ 1s known as a function of ¢ and 1

and set
o B\ dp\?
q /(a_—g + (d:—?]) (94)

(@ 1is the speed of the fictitious compressible flow of den-
sity p). Let ds be a line element on P and d&o the
corresponding line element on M. Then

e _ -

as = ¢

Cdp o~

o - &
so that

ds 4@

ke q

Since the angle between dg and the x-axis 1s 6§ and that
between dg and the f-axis' is 63 = n6, 1t is seen that a

representation of the profile P can be obtained by

7 =L/n i eiG ao _ (95)
a .

The connectlon between the profiles P and {1 can also
be expressed by the formulas '

P_o.5 & _t (96)
Rﬂ q ei n
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vhere Ry - 1s the radius of curvature of the profile P at
some point ' z and R the radius of curvature of [1 at

the corresponding point {. Angle @ 1is known along [1 and
so is g, for g* = q;/n. If .§ 48 known along {1, then

'Ehe)profile P can be constructed graphically, using (95) or
g 6 . )

Solution of the.Inverse Problem {(Continued)

It has been shown in the preceding section that the con-
struction of a compressible flow conjugate to a given lncom-
pressible flow depends upon the solution of a claesical
boundary value problem for a linear partial differential
equation (equation (86)) or equation -(87). The integration
may be performsd not in E(™) but in & simpler domaln, say
in the dcmaln exterior to the unit circle. TFor a conformal
tranéformation of - ‘B(M) ' into such a domain takes equations
(86); (87} into equations of the same form and does not af-
fect the duxiliary conditions. .Nevertheless, the actual in-~
tegration would be extremely laborious, especlally in view of
the fact that ‘the coefficient T would be ‘given elther numer-
ically or .by & very complicated analytical expression. Fur-~
-ther research 1s necessary in order to reduce the computation-
al 'work %o an acceptable minimunm.

The physical interpretation of equations (85) given in
the foregoing shows that these equations can be solved mechan~
ically by G. I. Taylor's well-known method of the "electros
lytie bath", (See reference 1l4. ) It should be noted that,
whereas Taylor applied his method in order to obtain a se-
quence of succegsive approximations to the solution of the
direct problem (i.e., to the computdation of the compressible
flow past a given proflle) in thig case the method immedi-
,ately furnlshes the exact solution of the ihverse problem.

L Tor slow flows (i.e., for flows where the local Mach
number is small) the following approximate method can be
used.

, . The coefficient . T . in the equations (85) is equal to 1
for M = 0. and decrenges very slowly as M increases to
_about 0.6, as seen from table I, where the polytropic rela-
tion with ¥.= 1.405 has been assumed,.,(,cf also,fig. 2).

'Theréfbre, for low Mach numbers, the dengity p -of the
flctitious flow in the {-plane (see preceding section) is
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almost constant so that g3 will be a good approximation %o
d. HReplacing g by qy = 1*% in the formulas (95), (98)

yields

wn
g = [ 857 618 45 (97)
\ q
and
R M 1
_E =n a ' jL = — (o8)
Rn q 8 n
Since ‘'ls known as a -function of qy and therefore

q*n
known along F] the profile P can be immediately con-
structed.,

From figure 2, where ¢q &and q%* are plotted as func-
tions of M, it 'is seen that the profile distortion will be,
small for small values of Mg and fzr n eclose to 1,

This approximate method is based upon setting, T= 1,
The sameé assumntlon s made in the Tchaplygin-Karman—Tsien
approximate method, However, thers the equation of state is
changed accordingly and the resulting differential equation
is integratqed rigorously; whereas here the rigorous equation
is solved approximately. (However, see also reference 12,
p. 348, .

Congtruction of a FPlow around a Profile
Similar to a Given Profile

Suppoge it ie desired to construct a compreseible Fflow
around a profile P seimilar to a given profile P, and hav-

ing a prescribed staznation point S. 'For the sake of defi-
niteness it is agsumed that P, possesses one sharp tralling
edgs,

Since the connection between n and M, is not known
a priori it is advisable to start by choosing a value for =n
and constructing a profile [1 such that 1f P is obtained
from [l by using (95) with this value of n a profile pos-
sessing only oxe sharp edgs will result. Profile [1 can be
constructed by the method described in the preceding chapter.
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Let =G(§) be-the potential ;of a flow around r1'which
has the velocity 1 &at infinity.. It is now necessary to find
a value q* such that if g* 1s determined as

é* = Q* q*n |>

and’ T is determined as T = the values of § ob-
tained by integrating eauations %85) to (87) will lead to a
closed profile P, when substituted in the relation (95).

At the present state of the theory this can be achleved only
by a trial-and-error method. It is convénient to start with
the value of g%, *given by (74) and then change this value-so
as ' to obtain a closed profile’ P, Since this involves the
integration of the equations (85) to (87) for different fune-
tions T, the amount " of computational work is rather consid-
erable,

In the case of a circulation—free fliow the situation is

much simpler for q% 1s independent of" n and n may be
taken as 1.

CONCLUDING REMARKS -

A method is gilven to trdnsqumua two-dimensional incom~
pressible flow around a closed profile into a subsonic com- - « -
pressible flow around another closed profile. . The profile

distortion is. small for &mall’ values of the strean Mackh nune~
ber.

In the case of the actual equabion of state the trans-
formation depends upon the solution of a classical boundary
value problem for a linear partial differential equation. An
approximate method of solving 'this problem is indicated.
Further theoretical work is required in order to establish
the validity of the method in all cases and 4in order to reduce
the amount of computational work,

It is-believed that, after the solution of this inverse
problem is completed, a way of solving the direct problem
(computation of the flow around a given profile) will be open.

If Von Karmén's and Tsien's linearized equation ‘of state
is assumed, this transformation is carried out completely and



46 NACA TN No. 989

in a closed form not only for flows without circulation .
(which was s2ready done by Tsien) but for flows with circula-
tion as well,

Concerning the applications of the linearized equation
of state (Y = -1) the following mdy be said. This equation
of state can be applied conslstently. But, it also seems
worthwhile to try to use the assumption Y = -1 only in
order to obtain the valuves of the dimensionless speed ¢ ‘and. to
comgptite the resulting Mach number by means of the rigorous
equation of state.

Other applications of solutions based upon setting
Y = -1 also suggest, themselves, for instahce, to the solu-
tion of the exact gquation of motion by successive approxima-
tions (by using thé solution for. ¥ = -1, instead of the ,
eelugion for an incempressible flow, as §he first approxima-
tlon

Numerical examples and a comparison with other methods
will be given ‘in-a subsequent report.

t

Brown University, :
Providence, R. 1., April 29, 1944.
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.. APPENDIX | .-

A, This segtion containe the proof.of the following

Lemma 1; Léf:'

=tz M= Nlx.p) (A1)

be a transformation of a-domain D ‘in the (x,y)-plane into
‘s domain A in the (f,N)-plane, Let '@ and W be functions
of x and y defined in D. (By virtue of the above trans-

formatlon they may aleo be considered ms functions of £ and
N defined in A.§ I and V eatisfy in D thp differ-

ential eguationsg T

8

5= = % oy E .
’ N A= A(x,y) >0 (a2)
aﬂ: _AQH{} o ' ) : .

' Sy Bx

nd in 4 the:differential squations:

vy

LAY

g
|
[ve]

9

7 B =3B(,M) >0 - | (43)

2
i
l -
.. hj
-

Py

.then the trangformation“(Ai)'lg“gohfbrmal'with respect to the
following Riemann metric defined in D;

5% = e dx® + 2f dx dy + g dy> i (A4)

where
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BZ
e

- e = cos® @ + sin® g

Ky
n

B2 '
(l - Is) sin § cos § . (A?)

.. 2 B2 2
sin e-l-Igcos 8

(]
\

»
(*]
oN

|

"
{

)
lal
(R

is the angzle betwsen the line y = constant and the

tang:@@. _@9_
oy dx

Geometrical proof. (Cf. fi 7.}~ Equations (A2) show
that the lines ¢ = constant and ¥ =.constant subdivide
the (x,y)-plane into infinitesimal rectangles of side ratio &,
Similarly, equations (A3) express the fact that the lines
@ = constant and VY = constant subdivide the (f,T)-plane
into infinitesimal rectangles of side ratio B, Therefore, in
the neighborhood of some point (x,y) the mapping (Al) can be
described as the product of a similarity transformation and a
transformation which contracts all lengths in the direction
of the line ® = constant in the ravio B/A. But a mapping
conformal with respect to the metric (A4) is exactly such a
mapping. TFor, let ds = (dx, dyJ ©DPe a line element in the
(x,y)-plane and let « be the angle between its direction
and the x-direction. Then dx = ds cos o, dy = ds, sin o,
and ¥ = *(8 -~ o) 4is the angle between this line element .and
the line VY = constant. A short computatiorn shows that the
non-Euclidean length of ds, as given by (44), is equal to

a5 = ds/1 - {1 - B2/a%) gin® g

Thus, for ds.;ﬁaréllél to the line ¢ = constant,
ds = (B/A)ds, and for ds parallel to the 1line V¥ = constant,
as ds.

Analytical proof.- Bquations (A3) can be written. in the

form
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'ﬂ2+£ dy 3x 4, By BY
3x Ot 3y 3x amn dy 8m
2v 3z , 3 3Y . _y (2% 3% , By ¥
dx 3n 3y 9n Ix 3¢ ay At
By use of the relations
'QE_J.a_l‘l @..E__J.a—ﬁ-
3¢ =~ 3y' om 3y
3 on - ex
_alx,y)
3(¢,n)

this can be written in the form

wﬁ Cﬂﬂ_ﬂﬁ
3% oy av ax 3% 3y 3y 3%
Sp 3¢ _ 3p of Sy on . 8¥ on
3x 38y 3y 8x 3% 3y 3y o¥

Introducing the values of dy/3x and ay/dy gilven by (A2)
and using (A6) gives

3 coéne 2t + B gin © =14 = - sin 6 an + cos 6 an
A ox A oy ox oy
sin B éi - cos B ag = = cos ©O aﬂ + B sin 8 an

99X 3y A. . ax A 3y
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Solving for 3f/3x and df/dy gives

g& =" {( - 1) sin § cos e (B in? g .+ cos® e>
3 A B° 3 B2 3
é-fr. =-3 {(sina 8 +- el cog® 9) -é_’}n{' + (1-2 - 1> sin 8 cos 6 'a?'}

If the notations given by (AB) are used, these equations éan
be written in the form R

é Qﬂ - £ QD'
8t _ __ov =k
ox

+./eg - ﬁa
g-@ﬂ._f.a.ﬂ
o0t _ _ dx 3y
oy

But these are the well-known Beltrami equations which express

the fact that the mapping (A1) is conformal with respect to
the metric (A4).

Rema&k: The converse of the lemma is also true and can
be proved similarly. A transformation (Al) conformal with
respect to the metric (44), (A5) takes o and V¥ satisfying
(A2) into functions which satisfy equations (43) in the
(€,M)-plane.

B. This section contains the proof of lemma 2. If E(P)
is mapped into .BE() by & transformation

g = E.(x’y)l N = ﬂ(x.Y)

which is conformal with respect to a subsoni¢c compressible
flow around P and such that
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ag x° +' 52 —> o

Lhen u* - iv*¥, considered as g function of ¢ = ¢ + iN
"heg at - the neighborhood of f =0 " Yase: Laurent development
u¥ -~ iv* = g% - Py L. L. (B2)
S oo o, g
wherse
r =/1 -u3 8% (B3)
e,

I being the Qirculat;on of.-the flow around P,

The above transformation-can be written in the form

y
4 fﬂ_.___d +/_a_g_<_x,_w_dy,
“%b

.. ox! ay!
. ; - . X .. ' oy
= A + (x ~ a) + M - l-ldxl +fa§(xsyl) ay!
. ax! j Jy ay|
. o a . |
n = B +/’M dx!? .;./aq(x..')") dy"
Y i AUt

. //‘_DL£L¢_~ axt 4 Faly-b) f//‘{_ﬂizLxJ - N }

e
1]

]
w

ax! L. .oy!
where (a,b) is some point of ‘E(P),

- t(a,8)," B =nla;v)
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and

RN

Ho=y1 - WG

If use is made of 1'Hopitalfe rule and (Bl), it is seen that

x +'ok¢xé_4‘y2)

E =
xa+y‘a-——>ca
N = N,y + ol/x® + y®)
Introducing Lo |
2 _=
.Re--:-xa-!-Nmy
shows that
E = x + o(R)
S : (B4)
'n=Nmy+O(R) .
Therefore:. '

l: 1. L = 1 +O<}->
{ x4+ N,y + o(R) =x + iN_ ¥ R

I

%; o(§t>; n > 1

Since u* - iv* is a one-valued analytic function of {
in B(M) 1% possesses the Laurent development

o + iB L 22 + 18 5 +

o * =
u 1vé = g* + 0 T .. (B5)
{ .
Hence, for sufficlently large valuees of x2 & ya,
a + 1 1
a* - iv¥ = g* + ——~———E— + o(—) i . (Bs)
x4 1Ny R
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gso that
2 3 _= 3
x° + N v -
vo= L ¥ PX o(z) (B8)
x4+ N; ya
q*a = u*g + v*a
+ BX
= q*® + 2q* ox + BNy 0(:3) (39)
o ® g? 4 §2 R R
o ¥
g% = q* + @X* BlaV o<-1-> (B10)
& x® + N2 R
Next, gq/q* is an analytic function of g*, so that
f‘i = %% + Aolg* — g% ) + 0(ig*x - g%} ?) (B11)
o
lg* - q*1® —s ©
-where
A =4 (__q_)l
et * w/!
dg d g% = c*;o
= 1 {q* _.(‘:..'_ -~ q.}}l
q,,,z dg* 3 | g% = g*
= 2w (L. 1) (B12)
a% e
glnce
/ 2
L U S AL TR S LY O
dg  dg . a a
(Cf. the definition of the conjugate speed a*.)



NACA TN No. 969 . _ 56

By (B1l) and (B10)

o a e, )

(@] .
* x® '+ N2 2

Therefore

no= L ouk = g 4 PRESETR: BNm Y 4, oft (B13)
*® ; N_ R

S R “Nm Yy - Bx + ( Bl4
TR T TR NZ ¥ °\R , (B14)

'ﬁhé:symbol p 1is an analytic function of q &and there-
fore also of gq¥*, Hence

ey

P =P, + Bm(q* - C_lfx,) + 0(]q* - q*_[® - (B15)

¥ _ W] S
le* - q3f—> 0

where o
. . . . -
R S G g F, o T T
- q¥ =g e
s1ncel"&yfﬁzei'ln@ﬁlli's BQuatfbn.
j-‘é}_‘?_ e _E_ MBI
By (B15) and (B810)
P =P * B, T— gm * o(.) : (p17)
x°H Ny |

so that, by (B13), (Bl4), and (B17),
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+ BN,
pu = pog 1o + pmg.;pu d"x s y o+ 0/%) (Bla>
% x® + N v
_ Qe Ny - Bx 1 (B19)
PV = P Tw 2 55t °<‘_>
’ q;-x + NO ¥y R

Now, let C ©be any simple closed curve containing the
profile P in its interior. Then

r =‘//’u dx + v dy (B20)

c

0 =L/ﬂ pv dx = pu 4y (B21)

c

In particular, it 1s possible to take for € the ellipse Cr
with the semi-axis

a,='R’ b:_R_
e
the equation of which is

o x2+\}'2y.2___R2

For sufficiently large values of R +the developments
for u, v, pu, pv previously obtained may be introduced
under the integral signs in (B20C), (B31). Then, using Green's
theorem and denoting the interior of Cg by Ep results in

l/ﬂ' Gg, dx + —gu/n —~-—— (mx + BN, y) ax

3
i

+ %o (qNe y - Bx) dy1 + o(1)
‘o q'* .f
= - 2 & .& 8 JQ}/Ex dy + o(1)
R® g )
= - ;% %%;ﬂ + o(1)
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. . 1 a . '
0 = - -(;-P@ Q. dy +E§[ P -_(;'? (C?Noo.y ﬁ)x)d_x
L& . =~ o Lot . . B

. R R l

- Pg 2% N, (m£?4'eﬁ®2y)dy1.f 6(1): -
aX J
= = Pao S ZmNm~Z7p dx dy + o(1)
R® aX JS B

- 20p_ = mw + o(1)
. q;

Letting R —> o yields

2T

r = - e 0= - 2map_ -=
N o ® ey
t
~ whence . :
B = - Neo T' .-.E’, o =0 (B22)

If this is substituted into (B5), it can be seen that (B2),
(B3) is verified.

' C. This section ig devoted to the proof of the properties
of the mapping function (70) which have been announced and
usged in derliving the parametric representation of subsonic
flowe with Y = -1, . : :

First of all, this function maps M 4into a closed pro-
file P and is one-valued in E(M). In fact, let J be a
closed curve around [1 and d . the increase in 2z as
goes once around J (J may coincide with 1 ). TFor suffi-
clently large values.of [, 'G'(g) has the Laurent develop~
ment '

G'(t) = 1 + él + ff . e ey A real
i

g 1
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Therefore-
a = {L/ﬁef(§>1 afa at - uat/P er ()2 }
= 2mh; .{(1 - 1/n) -.p® (1 + 1/n)}
If A, =0, & . If A, # 0, G(f) is not one-valued,
so that =n = 1/4’1 - ME apd therefore '

(L -~ 1/n) = p® (1 + 1/n)

so that d = 0,

Next, let 4z = dsel® ©be the complex 1ine element on P,

it = aoet®l the corresponding complex line element on I,
On M

G1E) = [60 o=t | (c1)
so that by (70):

iy = G‘qul—lln (1 - uzlgq»a/n) eiei/n iq (c2)

andltherefore . :
ds 1-1'n 3 a/n
- = oley /2 (1 - TR (e 3] /2y
o X . .

1

By virtue of (69) ds/dc cannot vanish except at the two
‘stagnation points where . G' = 0O, and is positive elsewhere,
Hence the .mapping of {1 into P is one-to-one. .

Purthermore, it is easily seen that =z is finite for
all finite values of Q and z = o for { = o,

Finaily,.the Jacobian

l a(X! Y)
B30 M

does not vanish in E(M). For
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o) oZ 1-1 . l1-1711
A A et
(¢3)
oz oz ,g_g’_ ;1=-2 2 ,,1+1/
an'i<a§_a'_),' to(ert /4wt Y
And ‘
=z, ¥) _ az az\ _ 2, g 2=2/n g 4/n
E S 3E an) " cT ey (1 - p*jeq )

The expression on the right-hand side is not zero, for it is
always assumed that there are no stagnation points within the

flow and (1 - ﬁ4]G'f4/n

) > 0 by virtue of (69).

From the preceding results it follows that (70) maps
E(M 4into s simply connected domsin B(P) containing the
point infinity and bounded by & closed curve P.

From (03) and (65) it also follows %that as —t—

Q

’g_>a<1-u3>. -g-ﬁ-_>o. g.zg:_>o, --%%—aG(1+u2) (ca)

Q

Finally, if d4f = i d.o‘e’i'ei is a complex line element

sltuated at a point of [1 and normal to [}, the correspond-
ing line element dz is, by (70) and (Cl) given by

az = 1006t [*H/R (1 4 pBler2/R) o181/R 44

By comparison of this with (C2) it is seen that. direction
normal to [ 1ig taken into the direction nqrmal Lg P,
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The distorted speed (q¥), the Mach mmber (W), the
dimepsionlass density (e) s and the coefficient of the symmetrized
hodograph equation (T) as functions of the dimensionless speed

TABLE I

Y ge (3= 1.405; q, = .811976; only the mantlssas of log g

are given,)
* "

q log, @ q¥ P T
01 160453 | ,014169 | .Q1OG0 08996 | 1.00000
02 481434 | ,028936 | .02000 »22680 | 1.00000
.08 ezra7e | 0435338 | .0B000 09956 | 1.00000
.04 762555 | 057854 | 04001 .96920 | 1.00000
.08 g6ei4s | ,0vR301 | 05001 90976 [ 1,00000
<06 938209 | 088788 | .05002 .99820 | 1.00000
<07 005014 | 10116 077005 997585 » 99900
.08 o6epee | 11587 .08006 «98860 »99959
00 113609 | .1RPOG 08007 «9p5BE « 89988
.10 159868 | 14433 10010 | ..99501 99997
W11 200633 | 15088 »11014 20308 00996
A2 238080 | (17501 .12018 . 90002 «99994
A5 272548 | 80 « 13082 98157 «59901
12 304458 | ,BOLSE .14028 00023 .59988
.15 334083 | 21582 15054 . 80879 .59984
.18 6177l | «2300R 18042 09726 39990
A7 387138 | 22420 17050 .0p561 99874
T 412176 | R56%8 .18059 .90386 80067
,%3 435249 | 27245 « 18070 -58205 99959
21 477850 | +30049 »21084 «A7800 .08889
82 407557 | 81445 .22108 « 97687 .389g8
23 5163628 | 52087 25124 JO7378 «99911
-7 534321 | 34283 24141 87146 .99895
85 551503 | 35604 «25160 - 08904 90875
.28 B&7988- | 36080 «26180 « 98664 .P9853
27 508782 | .38350 JR7E08 -96304 .59829
«28 598938 | 30713 20225 96126 « 29801
lm 615533 .41071 -m .9534” -99'?89
. 8276590 | .4AR42R <308 «DE560 « 29755

—TABIE I,
q log q* q# X T
0 | 7

.51 641159 |.48768 « 51506 05285 99595
«32 8564211 | ,45104 «BRIET .34858 .90652
.33 0666852 | .4645¢ 33570 04843 92604
o3 879031 | .47758 « 34405 . 94310 58551
.35 690827 | .49071 « 35442 05006 99498
.38 noeeas | .50878 .36482 95644 . 99487
.37 713298 | . 51677 3754 03204 . 89858
38 794009 |.52067 38588 22934 .99278
.59 754%8e | .64240 . 39815 2R566 «0910p
.40 744465 | .5b5ER 308684 .921p9 . 99089
.41 754285 |.b6785 | .41718 .01804 .98857
o2 76%121 | 58038 4E771 «01410 .08886
oh3 77Ra%2 | .59283 .43528 .21003 . 96786
N7} 781881 | .80517 «44889 «20597 9833
oAl 70516 |.81741 | 45952 0178 « 06480
.46 00027 |.62056 47018 « 99750 . 08358
A7 807244 | 64287 +48083 99315 .96188
48 815234 (.85348 | .49161 | .B2972 . 57988
«48 825004 |.66528 | 50858 «33420 97789
-50 350565 -67896 -51516 . g?sal ° -Wm
«E1, 837916 |.88852 « 58300 07482 97847
.52 345071 | .69696 55485 87010 97090
53 852032 |.71187 54575 . DOE? 96838
54 858809 | .72246 56889 « 86047 . 56645
.55 285396 | .75349 58788 .B5549 .

.56 871808 |.74440 57888 05044 . 06898
.57 BYBDAT  §.76517 JE373 | ,e4532 95558
.58 epalle |.76680 | .6008S .84015 «95150
59 BYO019 |.77628 | .B1188 « 53466 54733
«80 806761 | .786651 .82514 »BR955 .

«81 801343 | 79679 | .G34DY .82412 «93800
«62 906769 | .80661 64584 .61865 93880
89 912042 |, «B5685 . «BR7RL
N 917164 | .BR33% 66882 «B07TBL 92119
.85 Q22138 |.65507 L7573 .80185 91472
86 028066 | .84581 69119 +79618 00775
&7 251849 |.B5438 | 70270 79032 J000R5
68 958190 |.58356 71428 78447 +B9R1Y
.89 e40600 |.47213 | .7esea 77855 « 58847
10 844840 |.BBOV4 | 73VES JTTE58 - 87408

696 °oN HI YOVN
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TABIE I. (Ooncluded)

. 3% % ¥ T
q loeloq q f
71 ©48969 «88914 «74927 .76854 « 86398
72 252951 « 89733 «76105 +76045 « 85303
73 956795 - 90531 «7728% 75431 «84121
74 960501 «91308 78479 74811 . 82844
«75 964070 «92080 «79875 «74186 « 81459
.76 2687500 « 92790 « 80877 «73555 79957
«77 970791 «93406 « 82085 « 72920 78325
.78 973942 «94176 «83300 «TR279 «76547
<79 976951 «94631 «84521 71654 74608
«80 979817 «95459 _« 86748 «70984 72481
.81 9825368 «96059 « 88984 «70329 70146
«82 ° 985106 «96629 « 88226 +69870 67570
«83 987521 «.97168 « 89475 89006 «64713
«84 989777 976874 «80732 -68339 .61524
.85 991866 98145 «91980 .87667 «57934
.88 993780 98578 «93287 66991 «53846
«87 995505 98970 «94547 «66312 «49118
.88 897025 « 99317 « 95834 .85828 «43520
-89 998313 99612 «97130 «64942 « 36626
«90 999326 «99845 «98434 «64252 « 27434
«91 999957 «99990 «99747 +83558 «11190
* qg 000000 [L.00000 | 1.,00000 «83425 00000
TABLE II
Constants entering in the computation of the con-
Jugate compressible flow for ¥ = - 1.
Z N
=B, | 1/m | oueqry | MR | kmul | xR
«0b6 1.001 «929 +085 .001 39,98 40,16
«10 1.005 «995 +050 +003 19,95 20.26
«15 1.011 «989 <075 .006 13.26 13.65
«20 1.021 +«980 «101 010 2,90 10.38
«25 1.033 «968 1 « L27 «018 7.87 8.43
«30 1.048 «954 «154 «024 8.51 7.13
«35 1.088 «987 «181 «033 5.538 6,21
«40 1.021 «917 212 .045 4,72 5.53
«45 1.120 «828 «R38 « 057 4.21 5.00
+«50 1.185 «B866 +RE8 072 3.73 4,58
55 1.187 «836 «300 «080 3.34 4,23
«680 1.850 «800 « 333 «111 3.30 3.95
65 1.308 «760 «369 «136 2.71 3.71
«70 1.400 J714 +«408 <167 . 2.45 3.50
«75 1.535 «851 «454 «208 2,20 3,36
80 1.667 «6Q0 «500 «250 2.00 3.17
«856 1.898 « 587 «557 «310 1.80 3.04
«80 «627 «383 1.60
.95 .724 .524 1038
1.00 1.000 1.000 1.00
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